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SUMMARY

A multigrid method is studied for the solution of a linear system resulting from the high-order nine-point
discretization of the convection-diffusion equations. The residual injection operator is used as a substitute
for the usual full-weighting in the multigrid process. A heuristic analysis is given to obtain a dynamic
injection operator that is cost-effective for both diffusion- and convection-dominated problems. Numer-
ical experiments are employed to test the stability and efficiency of the proposed method. © 1998 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The general convection-diffusion equation is considered:

uxx+uyy+p(x, y)ux+q(x, y)uy= f(x, y), (x, y)�V,

lu+r
(u
(n

=g(x, y), (x, y)�(V, (1)

where l, r are real numbers, p(x, y) and q(x, y) are functions of x and y. V is a convex domain
and (V is the boundary of V. Let

P=max
�

sup
(x,y)�V

�p(x, y)�, sup
(x,y)�V

�q(x, y)��,

and define the cell-Reynolds number as

R=
Ph
2

,

where h is the uniform mesh width in the x- and y-directions. For R51, Equation (1) is
diffusion-dominated. Otherwise it is convection-dominated.

When p(x, y) and q(x, y) are oscillatory on V, the direction of the convection changes
rapidly; in particular, when Equation (1) represents a recirculating flow problem and V
contains stagnation points (turning points). The standard full-weighting usually misrepresents
that characteristics of the flow around the turning points. By projecting residuals with

1 AMS subject classification: 65F10, 65N22, 65N55.
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misrepresented characteristics to the coarse grid, the coarse grid subproblem fails to approxi-
mate the one of the fine grid and causes instability on the fine grid for high-Reynolds flow.

Brandt and Yavneh [1] proposed a multigrid method (using a preconditioned five-point
scheme) to accelerate the convergence of problems with high Reynolds recirculating flows.
They utilized a dynamic overweighted residual (the coefficients of which are computed at each
grid level) to reach this goal. Their method shows a very significant improvement in
convergence rates at little cost.

Gupta et al. [2] utilized a fourth-order compact nine-point finite difference scheme (NPF) in
the multigrid process. Using a red–black Gauss–Seidel smoother, they considered a residual
injection operator (or scaled injection operator with the injection factor applied uniformly on
all grid levels and taken as \1.0) instead of the standard full-weighting operator to solve
Equation (1) with high-cell-Reynolds numbers. The same approach was extended by Zhang [3]
that implemented NPF with a four-color ordering. Their numerical results show that the
residual injection operator always converges, whereas the full-weighting diverges when R is
large.

For the diffusion-dominated problem, Gupta et al. derived a scaled injection operator (with
the injection factor close to 0.54) that performs better than full-weighting and half-injection.
However, this injection operator is not good for convection-dominated problems, particularly
when the values of R are large.

The idea behind the methods of Gupta et al., Zhang, and Brandt and Yavneh is that when
R increases, the value of the injection factor (or overweighted residual) b (whether used
uniformly or computed dynamically) should also increase up to a constant (may be problem
dependent). Unfortunately, the optimum b obtained for large R cannot be considered for
diffusion-dominated problems. Even if R is moderated, this optimum may lead to divergence.
Using a nine-point high-order discretization formula and the red–black Gauss–Seidel (RBGS)
smoother, a dynamic injection operator that alleviate these difficulties is derived. Instead of
using a uniformly coefficient b, or computing one on all the grid levels, a residual injection
factor is computed for each grid point. This dynamic factor is the function of the actual value
of the local Reynolds number (defined below) at the grid point considered.

This paper is organized as follows. The multigrid algorithm is briefly presented in Section 2.
To understand the analysis Section 3 starts with some basic computations on a constant
coefficients problem. Simple assumptions are made and the results of the computations (on the
constant coefficients problem) are used to design the dynamic injection operator. In Section 4
the performance of the new operator is tested on problems taken from the literature. Remarks
and conclusions are given in Sections 5 and 6, respectively.

2. MULTIGRID IMPLEMENTATION

The multigrid solver is designed as follows:

1. Start from the fine grid by some initial guess and perform n1 RBGS relaxation sweeps.
2. Calculate the residuals corresponding to the coarse grid points, multiply the residuals by a

factor, b and inject the residuals to the coarse grid.
3. Perform m multigrid cycles on this grid.
4. Interpolate the coarse grid correction to the fine grid by bilinear interpolation.
5. Perform n2 RBGS relaxation sweeps on the fine grid.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1205–1216 (1998)
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n1 and n2 are the numbers of presmoothing and postsmoothing sweeps. The value m=2 is
taken, such that this algorithm corresponds to a W-cycle. For the relaxation technique, the
red–black Gauss–Seidel (RBGS) smoother is considered.

The test problems given here are solved using a uniform mesh size h on a rectangular
domain V. For the multigrid solver, standard coarsening technique (the mesh size of the coarse
grid doubles that of the fine grid) is used.

The performance is measured by the number (n) of W-cycles needed to reach a given
reduction (tol) of the l2-norm of the residual, i.e. 
r (n)
2B tol � 
r (0)
2, where r (k) denotes the
residual after k W-cycles. All computations were done on a SGI (Silicon Graphic Indy)
workstation using FORTRAN 77 programming language in double precision.

NPF was used to discretize Equation (1). Details of the discretization scheme can be found
in Reference [4] and the multigrid implementation of this scheme can be found in Reference [2].
The reason for choosing this fourth-order discretization scheme is that it is stable for all e [2],
so the magnitude of the cell-Reynolds numbers that might cause divergence if a low-order, e.g.
a standard five-point formula, were employed, is of no concern. In addition, NPF was used on
all the grid levels. This choice was analytically shown to be stable in Reference [5].

3. RESIDUAL TRANSFER ANALYSIS

To find the optimal injection operator is to find the optimal scaling factor b to represent r̄i/2, j/2

(right-hand component of the coarse grid equation obtained from the transfer of the residual)
in terms of ri,j (component of the fine grid residual to be transferred), as accurately as possible,
i.e.

r̄i/2, j/2=bri, j. (2)

When the problem is diffusion-dominated, Gupta et al. [2] were able to derive an injection
factor (b=0.5467)2 the injection operator of which performs better than both the full-weight-
ing and the half-injection operators. For convection-dominated problems, the standard full-
weighting transfers a bad representation of the problem on the fine grid to the coarse grid. This
may lead to slow convergence or even divergence. Of course, for convection-dominated
problems the residual injection factor will generally change from the one obtained for
diffusion-dominated problems. Since the smooth components of the errors increase as R
increases to infinity, the scaling factor b may be increased to reflect this fact. Although there
is no absolute guarantee that any single factor will work for all practical problems, in general
the residual injection factor is indeed an increasing function of the cell-Reynolds number R,
and it approaches a constant when R tends to infinity. This constant may be problem-depen-
dent, but it is usually between 1 and 2. Larger injection factors are unlikely to be useful in
practice, if only because the corresponding amplification of non-smooth error components
means that much better smoothing is then required [1].

Although the order of the injection operator is 0 (see Reference [6]) and the combination of
injection with bilinear interpolation (order 2) violates the order rule set up in References [6,7]
for small R (second-order equation), the numerical experiments in this study showed that the
injection operator is better than full-weighting in terms of CPU time [8].

2 This value was derived using the analysis of RBGS and full-weighting, and some geometric consideration when NPF
is employed.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1205–1216 (1998)



J. KOUATCHOU1208

The goal in this section is to find a dynamic injection factor that can be used both for
diffusion- and convection-dominated problems without deteriorating the rate of convergence.
This analysis is introduced by a simple example.

3.1. A simple experiment

Consider the following constant coefficient problem:

Problem 1

−e(uxx+uyy)−

2
2

ux−

2
2

uy=0 on V= (0, 1)× (0, 1), (3)

u=0 on (V, (4)

where e is positive. The exact solution is u=0.
The relationship between the injection factor b and the cell-Reynolds numbers R is required.

For h=1/64, this problem is solved with NPF-MG. The number of iterations is reported for
different values of e and the injection factor b in Table I. b is uniform on all the grid levels.

From Table I, when R is small (e is large) on the finest grid, the best b is 0.5467. But when
R is large (e small), as b increases, the rate of convergence improves. Large b that are good
for high-cell-Reynolds numbers are useless for the problem of small-cell-Reynolds numbers.
Even for moderated R, large b may lead to divergence. From these computations, the
difficulty for a particular value of e to find the appropriate residual injection factor that gives
the best convergence rate is noted. It can be stated, however, that when e decreases (or R
increase) then, b should increase.

In Table I, when e=10−3 a deterioration of the convergence or even divergence for all the
values of b is observed. A Fourier smoothing analysis was carried out using lexicographical
and line Gauss–Seidel relaxations (it is important to note that it impossible to perform the
same Fourier analysis with RBGS using a nine-point scheme). It was found that for a given
mesh width h, the largest value of the smoothing number is obtained for e=10−3 and this
value increases with h. This observation suggests that some of the coarsest grid in the multigrid
calculations needs to be removed.

Table I. Number of iterations for test Problem 1

R be

1.1 1.25 1.4 1.50.5467 0.6 0.7 0.8 0.9 1.0

16 48 div div div101 0.000552 4 4 7 9 12
100 49 div div div0.005524 4 4 7 9 12 16

divdivdiv42181297540.05524210−1

div div352516 div10 61770.55242710−2

div div div div div5.52427 37 49 229 div div10−3

27 22 18 1755.242710−4 73 64 52 43 36 31
18 1534 28 2210−5 42552.427 110 93 69 53

2110−6 17 155524.27 110 92 68 52 41 33 27
2710−7 21 17 1555242.7 110 92 68 52 41 33

h=1/64, tol=10−5, ‘div’ stands for divergence.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1205–1216 (1998)
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Table II. Number of iterations for test Problem 1 when some coarsest grids
were removed

e b

1.1 1.25 1.4 1.50.5467 0.6 0.7 0.8 0.9 1.0

divdiv10−2 div9 589 13 18 27 38
div div10−3 31 32 35 41 53 81 div194

99 85 7410−4 198 183 159 139 123 68110

h=1/64, tol=10−5, ‘div’ stands for divergence.

The same multigrid experiments were performed by removing some coarsest grid (h=1/2
and h=1/4). The results of Table II show an improvement of the convergence (or even the
regain of convergence) for e=10−3. But when e=10−2 (or greater) and e=10−4 (or less) the
convergence deteriorates.

It is important to note that for this constant coefficient problem, the full-weighting always
leads to convergence. But for convection-dominated problems the number of iterations with
the full-weighting is at least twice that obtained with the residual injection operator (with an
appropriate factor) [8]. For the variable coefficient problems that are introduced later,
full-weighting does not converge when R�1.

3.2. Dynamic injection

This section begins with some observations (on the coefficient b) based on the results
obtained in References [1,2] and the ones just presented.

Obser6ation 1. For the nine-point formula, the factor b=0.5467 is 6ery effecti6e when
p=q=0 (and for diffusion-dominated problems).

b(R):bmin=0.5467 for R:0.

Obser6ation 2. The injection factor b is a bounded, increasing and continuous function of the
cell-Reynolds numbers R, with

db(R)
dR

\0, for 05RBn,

db(R)
dR

=0, for R]n,

b(R)=bmax, for R]n.

For a particular problem, it is difficult to find the value b that will give the best convergence
rate for high-cell-Reynolds numbers. Even if it were possible, another problem would require
a different b. Furthermore, in general, it will not be possible to compute R for variable
coefficient problems, and therefore, to find the appropriate b. Instead, each grid point must be
computed at an injection coefficient (that will be used to scale the residual) that reflects the
actual values of the functions p(x, y) and q(x, y) (with respect to the mesh size h) at this point.
First some assumptions are made.

Assumption 1. The residual scaling factor b is a piecewise linear function of the cell-Reynolds
numbers.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1205–1216 (1998)
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Assumption 2. For any problem,

b(0)=0.5467 and b(R)=bmax:1.5 for R]n.

Assumption 3. RBGS is an acceptable smoother (smoothing number less than one) for NPF.

The first assumption is very crude but helps simplify the analysis. The results of Table I seem
to suggest that the linear choice is not the best one (see the best b for e]10−3). But numerical
experiments show that this choice turns out to be accurate.

The second assumption is based on the experiments and the heuristic analysis developed in
Reference [2]. For small values of R, b=0.5467. For large R, b may be problem dependent.
In general, for recirculating flow problems with stagnation points, it is between one and two,
therefore, the average of the two values, 1.5, is taken. The goal is not to use the value 1.5
uniformly on all grid levels, but to use it in designing the dynamic injection operator.

The last assumption is somehow related to the second one, in the sense that if RBGS is not
a good smoother, large scaling factors (\2) are needed to get an acceptable rate of
convergence. Instead of taking a large b with RBGS, the best thing is to choose another
smoother that will require a smaller b. In addition, it is important to mention that it is not
possible to carry out a Fourier analysis of NPF when RBGS is employed, since the red points
can not be decoupled from the black points. However, in Reference [8], for constant coefficient
problems, Gupta et al. compared the performances of RBGS with other relaxation techniques
that were shown to have the smoothing property (smoothing number B1). They found that
RBGS outperforms all these relaxation techniques.

Now, bmin will refer to 0.5467 and bmax to 1.5.
Consider the multigrid algorithm with l+1 levels: 0, . . . , l and uniform square meshes on

each level with mesh widths h0 and hk=hk−1/2 for k=1, . . . , l. Let Vk, k=0, . . . , l be the
corresponding grid decompositions of the domain V. For a grid point (x, y) in Vk define the
local Reynolds number (LRk) by:

LRk(x, y)=
hk

2
max (�p(x, y)�, �q(x, y)�).

It is easy to check that

max
(x,y)�Vk

LRk(x, y)5R,

with equality, if P (defined in Section 1) is obtained on a grid point. If the functions p and q
are constant, LRk is constant on the level k. LRk and R will therefore be equal.

At a grid point of Vk that is also in Vk+1, the corresponding residual must be scaled by a
factor b that reflects the actual value of LRk at (x, y). When this value is small, b should be
close to bmin, when the value is large, b should be closed to bmax obtained for large-cell-
Reynolds numbers, and finally, if LRk(x, y) is moderated, the factor b should be a value
between the previous two. According to the preceding assumptions, if LRk(x, y)=0 then
b=bmin and if LRk(x, y):�, then b=bmax.

Let ñ be the minimum value of the function LR that requires the factor bmax. Suppose we
want to transfer the residual r (at a grid point (x, y)) from the grid level k to the grid level
k+1. It is assumed that (x, y) is a grid point of both Vk and Vk+1. The following formula is
used:

r̄(x, y)=bdi(LRk(x, y))×r(x, y), (5)

where (x, y) is grid point of both Vk and Vk+1, and

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1205–1216 (1998)
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bdi(LRk(x, y))=
!bmax−bmin

ñ LRk(x, y)+bmin

bmax

if
if

LRk(x, y)B ñ,
LRk(x, y)] ñ.

In Figure 1 bdi is plotted as a function of LR. It is important to note that the new residual
injection factor acts locally. Each component of the residual to be injected on the coarse grid
is treated individually. The components that have large LR will be scaled with high factor,
whereas those with small LR will be scaled with low factor. For constant coefficient problems,
bdi is constant for a given grid level k since LRk is constant. The method used in this particular
case will be somehow similar to the one of Brandt and Yavneh [1].

In this definition of the function bdi, the constant ñ plays a major role. How could the
appropriate value of ñ be chosen? A small value of ñ (bdi:bmax) is good for high R, but
cannot be used when the problem is diffusion-dominated because divergence is more likely to
be obtained. However, a large ñ (bdi:bmin) is best for small R; even though it is not
interesting for large R, it is more likely to give convergence. A trade-off between these two
cases must then be found, for one choice or the other will at least penalize moderated R.

To introduce the function bdi in our multigrid process, Step 2 of the algorithm introduced
above must be changed. The new Step 2 reads calculate the residuals corresponding to the
coarse grid points and the values of bdi, multiply the residuals by a factor bdi and inject the
residuals to the coarse grid.

This new algorithm does not introduce more computational complexity compared with the
previous one. To carry out Step 2, a simple comparison to find LRk(x, y) is added to the old
one (at all the grid levels the values of p(x, y) and q(x, y) have been precomputed during the
initialization process) and bdi(LRk(x, y)) is computed. The additional CPU time resulting from
these changes is negligible.

4. NUMERICAL EXPERIMENTS

Here the performances of the new injection operator are tested. For the computations,
ñ=1500.0 is chosen. It can be shown that convergence for any values of R can be reached.

First, the results for Problem 1, introduced in Section 3.1, are given. The number of
iterations is shown in Table III when h=1/32, 1/64, 1/128. The convergence is always
obtained. The comparison of the results in Tables I and III (column 3) shows that the dynamic

Figure 1. bdi as a function of LR.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1205–1216 (1998)
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Table III. Number of iterations for test Problem 1 with the dynamic injection
factor bdi

h=1/32 h=1/64e h=1/128

44101 4
4 4 4100

44410−1

10 710−2 5
27 3810−3 24

6448 9110−4

10−5 18 28 41
13151510−6

15 15 1310−7

tol=10−5.

injection operator works very well when R is small or large. For moderated R (e=10−4,
10−5) the dynamic injection is not optimum. This observation also appears in the results of the
next problems. This difficulty can be easily overcome by choosing another value of ñ (an
example is given at the end of this section).

The following variable coefficient problems are introduced.

Problem 2

−e(uxx+uyy)+b1(x, y)ux+b2(x, y)uy=0 on V= (−1, 1)× (0, 1),

u �( 1V
=1+ tanh(10+20x), −15x50,

(u
(n
)
( 2V

=
(u
(n
)
( 3V

=
(u
(n
)
( 4V

=
(u
(n
)
( 5V

=0,

b1(x, y)=y(1−x2), b2(x, y)= −x(1−y2). (6)

Problem 3

−e(uxx+uyy)+b1(x, y)ux+b2(x, y)uy= f(x, y) on V= (0, 0)× (0, 1),

u(x, y)=0 on (V, b1(x, y)=sin(py) cos(px), b2(x, y)= −cos(py) sin(px),
(7)

where e is a positive number. The exact solution u on V( is u=0 (Figure 2). Problem 2 was used
by de Zeeuw and van Asselt [9] to prove the stability of some five-point star schemes with
artificial viscosity. Problem 3, the characteristics of which form a single clockwise-rotating
vortex, presents a stagnation point at (1/2, 1/2) (Figure 3). It was introduced by Brandt and
Yavneh [1] in order to test the performances of their overweighted residual technique used to
solve problems with recirculating flows.

For these two problems, the performance of the dynamic injection operator is tested. The
problems for the injection factor constant on all the grid level b=0.5467 and 1.0, respectively,
are solved. The dynamic injection factor is also used. The results are summarized in Table IV
for Problem 2 and in Table V for Problem 3.

The dynamic injection operator performs well for small and large values of e. It does not
deteriorate the rate of convergence. When b=0.5467 uniformly on all the grid levels, there is
always convergence but when e decreases, its performance deteriorates. The constant b=1.0
alleviates this difficulty but its utilization may sometimes lead to divergence.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1205–1216 (1998)
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Figure 2. The domain V for Problem 2.

As seen in the constant coefficients problem, for e=10−4, 10−5 the dynamic injection
displays some difficulties. The same experiments were carried out with different values of ñ.
The best ñ (for any values of e) is :250 for Problems 1 and 3 and :2500 for Problem 2.

In the previous computations it was shown that for small R, the dynamic injection operator
performs as well as the constant injection operator, and when in the latter, the optimum
coefficient (b=0.5467) is uniformly applied at all the grid levels. Assume now that when R is
large, the optimum b (the one that gives the best convergence rate) is known for a given
problem; could the dynamic injection operator still have comparable results?

For Problem 3, h=1/128, and different values of residual injection factor b (uniformly on
all grid levels) and the dynamic injection operator (with ñ=250), when e varies from 10−4 to
10−9, are applied. For each case the number of iterations is computed. The results are
summarized in Table VI.

When e vanishes, the optimum b is a number between 1.2 and 1.4. In fact, b=1.4 is the
optimum one. If we take a smaller tol the best convergence rate will be with this factor. This
b=1.4 agrees with the one found by Brandt and Yavneh [1].

Our dynamic operator and the optimum b have the same convergence rate. It is important
to note that the utilization of the factor b=1.5 deteriorates the convergence. In the dynamic

Figure 3. The domain V for Problem 3.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1205–1216 (1998)
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Table IV. Number of iterations for Problem 2

e b

h=1/32 h=1/64 h=1/128

0.5467 1.00.5467 1.0 bdi 0.5467 1.0 bdibdi

144 4101 44 12 4 4 12
4 4 14 4100 4 12 4 4 12

414410−1 4 412 4 4 13
4 4 3810−2 5 429 5 4 48

10 div10−3 21 div 21 15 div 15 10
div6710−4 7964 5940 56 70 52
42 6910−5 75 45 38 111 46 33 137

244415610−6 75 3045 38 112 45
30 156 4410−7 75 45 38 24112 45

tol=10−4, ‘div’ stands for divergence.

operator, some components of the residual are scaled by 1.5 before they are injected to the
next coarse grid. This does not affect the convergence of the multigrid algorithm.

5. REMARKS

In the preceding computations, a convergence criteria tol was chosen, which can be considered
as weak. The use of a stronger criteria will lead to the same result but with larger number of
iterations. Our goal was to show the efficiency of the new injection operator. The choice of the
weak convergence criteria was determined by the NPF used for discretization of Equation (1).
This scheme, though stable, displays slow convergence for large-cell-Reynolds numbers. This
difficulty can easily be overcome by using, e.g. the minimal residual acceleration technique
(that can reduce the number of iterations by \85%) [10].

Table V. Number of iterations for Problem 3

be

h=1/128h=1/64h=1/32

bdi 0.5467 1.0 bdi0.5467 1.0 bdi 0.5467 1.0

12 3312 333113101

3 3 12 33 11 3 3100 12
12 33 31310−1 33123

410−2 22 46 15 6 5 21 5
13 11 div 1112 10 12 1310−3 div

29 395944 412510−4 46 29 56
14510−5 25 3450 32 29 125 50 59

34 112 24 225010−6 32 24 127 50
33 112 24 215010−7 32 24 127 50

tol=10−4, ‘div’ stands for divergence.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1205–1216 (1998)
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Table VI. Number of iterations for Problem 3

be

1.5 bdi1.0 1.1 1.2 1.3 1.4

divdiv 27div10−4 29 64 div
22 22 29 2410−5 25 23 22

21362110−6 2124 22 21
21 3610−7 24 22 21 21 21

21362110−8 2124 22 21
21 21 36 2110−9 24 22 21

h=1/128, tol=10−4, ‘div’ stands for divergence.

The choice of the values bmax=1.5 and ñ=1500 can be seen arbitrary. The purpose was to
use fixed values that can work well on all the test problems. There is an interaction between
bmax and ñ. To have satisfactory results, larger bmax (or smaller) would require larger ñ (or
smaller). For instance, if bmax=2, ñ\106 was found to be effective. This choice did not affect
diffusion-dominated problems but was not as good as the one presented for the convection-
dominated problems.

For a fixed bmax, to find an effective ñ, convection-dominated problems with high R must
be studied, since this is where the difficulties lie. On all the problems the values e=10−6 and
h=1/64 were fixed and started with ñ=1000 until (by decreasing or increasing) the appropri-
ate ñ was obtained. This procedure of finding ñ is computationally less difficult than obtaining
the best b (since the best b depends on a particular problem with a given R, whereas ñ works
across problems with any R).

For Problem 3, when the physical viscosity coefficient e vanishes, the coefficients of the
equation are very small at and near the stagnation point (1/2, 1/2). In a neighborhood of this
point, the equation behaves almost like a Poisson equation. The dynamic injection operator
takes this fact into account, because the residual injection factor b at grid point in this
neighborhood is closed to bmin. The maximum error occurs near the stagnation point and the
accuracy is slightly better with the dynamic operator. But this result is not significant enough
to draw some general conclusions. More investigations need to be made in this direction.

The scaled injection operator (or in this work the dynamic injection operator), is used to find
three objectives:

1. For convection-dominated problems, convergence must be recovered when standard multi-
grid techniques diverge [2].

2. The use of the operator is required as an acceleration technique for both diffusion and
convection-dominated problems [8,2].

3. The design of stable and efficient multigrid solvers is required [8,2,5,3]. By efficiency, this
means building convergent and simple multigrid algorithms with no additional computa-
tional cost.

The last objective is different from the one of algebraic multigrid solvers, the goal of which is
to build robust solvers. For instance, the matrix-dependent prolongations and restrictions
technique [11] leads to a better convergence rate. In this approach, incomplete line relaxations
and sophisticated inter-grid transfer operators are employed at the expense of an increase of
memory usage and computational work.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1205–1216 (1998)
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6. CONCLUSION

In this article, the attention has been focused on designing a dynamic injection operator that
can be used both for diffusion- and convection-dominated problems. This operator does not
introduce more computational cost in the multigrid process and works very well for any value
of the cell-Reynolds numbers (whether small, moderated or very large).

The utilization of this new operator prevent the definition of an optimal injection factor
(depending on problems) for a given value of the cell-Reynolds number. A unique dynamic
operator can be used efficiently for a variety of problems but by a simple change of
parameters, one can derive a dynamic residual injection operator that is optimal for a
particular problem.
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